Algorithms¶
Torch Algorithms¶
TorchFedAvgAlgo¶
- class substrafl.algorithms.pytorch.TorchFedAvgAlgo(model: torch.nn.modules.module.Module, criterion: torch.nn.modules.loss._Loss, optimizer: torch.optim.optimizer.Optimizer, index_generator: substrafl.index_generator.base.BaseIndexGenerator, dataset: torch.utils.data.dataset.Dataset, scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, with_batch_norm_parameters: bool = False, seed: Optional[int] = None, use_gpu: bool = True, *args, **kwargs)¶
Bases:
substrafl.algorithms.pytorch.torch_base_algo.TorchAlgo
To be inherited. Wraps the necessary operation so a torch model can be trained in the Federated Averaging strategy.
The
train
method:updates the weights of the model with the aggregated weights,
initializes or loads the index generator,
calls the
_local_train()
method to do the local trainingthen gets the weight updates from the models and sends them to the aggregator.
The
predict
method generates the predictions.The child class can override the
_local_train()
and_local_predict()
methods, or other methods if necessary.To add a custom parameter to the
__init__
of the class, also add it to the call tosuper().__init__
as shown in the example withmy_custom_extra_parameter
. Only primitive types (str, int, …) are supported for extra parameters.Example
class MyAlgo(TorchFedAvgAlgo): def __init__( self, my_custom_extra_parameter, ): super().__init__( model=perceptron, criterion=torch.nn.MSELoss(), optimizer=optimizer, index_generator=NpIndexGenerator( num_updates=100, batch_size=32, ), dataset=MyDataset, my_custom_extra_parameter=my_custom_extra_parameter, ) def _local_train( self, train_dataset: torch.utils.data.Dataset, ): # Create torch dataloader from the automatically instantiated dataset # ``train_dataset = self._dataset(datasamples=datasamples, is_inference=False)`` is executed prior # the execution of this function train_data_loader = torch.utils.data.DataLoader(train_dataset, batch_sampler=self._index_generator) for x_batch, y_batch in train_data_loader: # Forward pass y_pred = self._model(x_batch) # Compute Loss loss = self._criterion(y_pred, y_batch) self._optimizer.zero_grad() loss.backward() self._optimizer.step() if self._scheduler is not None: self._scheduler.step()
The
__init__
functions is called at each call of the train() or predict() function For round>=2, some attributes will then be overwritten by their previous states in the load() function, before the train() or predict() function is ran.- Parameters
model (torch.nn.modules.module.Module) – A torch model.
criterion (torch.nn.modules.loss._Loss) – A torch criterion (loss).
optimizer (torch.optim.Optimizer) – A torch optimizer linked to the model.
index_generator (BaseIndexGenerator) – a stateful index generator. Must inherit from BaseIndexGenerator. The __next__ method shall return a python object (batch_index) which is used for selecting each batch from the output of the get_data method of the opener during training in this way:
x[batch_index], y[batch_index]
. If overridden, the generator class must be defined either as part of a package or in a different file than the one from which theexecute_experiment
function is called. This generator is used as statefulbatch_sampler
of the data loader created from the givendataset
dataset (torch.utils.data.Dataset) – an instantiable dataset class whose
__init__
arguments arex
,y
andis_inference
. The torch datasets used for both training and inference will be instantiate from it prior to the_local_train
execution and within thepredict
method. The__getitem__
methods of those generated datasets must return bothx
(training data) and y (target values) whenis_inference
is set toFalse
and onlyx
(testing data) whenis_inference
is set to True. This behavior can be changed by re-writing the _local_train or predict methods.scheduler (torch.optim.lr_scheduler._LRScheduler, Optional) – A torch scheduler that will be called at every batch. If None, no scheduler will be used. Defaults to None.
with_batch_norm_parameters (bool) – Whether to include the batch norm layer parameters in the fed avg strategy. Defaults to False.
seed (Optional[int]) – Seed set at the algo initialization on each organization. Defaults to None.
use_gpu (bool) – Whether to use the GPUs if they are available. Defaults to True.
- _local_predict(predict_dataset: torch.utils.data.dataset.Dataset, predictions_path)¶
Execute the following operations:
Create the torch dataloader using the index generator batch size.
Set the model to eval mode
Save the predictions using the
_save_predictions()
function.
- Parameters
predict_dataset (torch.utils.data.Dataset) – predict_dataset build from the x returned by the opener.
Important
The onus is on the user to
save
the compute predictions. Substrafl provides the_save_predictions()
to do so. The user can load those predictions from a metric file with the command:y_pred = np.load(inputs['predictions'])
.- Raises
BatchSizeNotFoundError – No default batch size have been found to perform local prediction. Please overwrite the predict function of your algorithm.
- Parameters
predict_dataset (torch.utils.data.dataset.Dataset) –
- _local_train(train_dataset: torch.utils.data.dataset.Dataset)¶
Local train method. Contains the local training loop.
Train the model on
num_updates
minibatches, using theself._index_generator generator
as batch sampler for the torch dataset.- Parameters
train_dataset (torch.utils.data.Dataset) – train_dataset build from the x and y returned by the opener.
Important
You must use
next(self._index_generator)
as batch sampler, to ensure that the batches you are using are correct between 2 rounds of the federated learning strategy.Example
# Create torch dataloader train_data_loader = torch.utils.data.DataLoader(train_dataset, batch_sampler=self._index_generator) for x_batch, y_batch in train_data_loader: # Forward pass y_pred = self._model(x_batch) # Compute Loss loss = self._criterion(y_pred, y_batch) self._optimizer.zero_grad() loss.backward() self._optimizer.step() if self._scheduler is not None: self._scheduler.step()
- _save_predictions(predictions: torch.Tensor, predictions_path: os.PathLike)¶
Save the predictions under the numpy format.
- Parameters
predictions (torch.Tensor) – predictions to save.
predictions_path (os.PathLike) – destination file to save predictions.
- initialize(shared_states)¶
Empty function, useful to load the algo in the different organizations in order to perform an evaluation before any training step.
- Parameters
shared_states – Unused but enforced signature due to the @remote decorator.
- load_local_state(path: pathlib.Path) substrafl.algorithms.pytorch.torch_base_algo.TorchAlgo ¶
Load the stateful arguments of this class. Child classes do not need to override that function.
- Parameters
path (pathlib.Path) – The path where the class has been saved.
- Returns
The class with the loaded elements.
- Return type
- property model: torch.nn.modules.module.Module¶
Model exposed when the user downloads the model
- Returns
model
- Return type
- predict(datasamples: Any, shared_state: Optional[Any] = None, predictions_path: os.PathLike = None) Any ¶
Execute the following operations:
Create the test torch dataset.
Execute and return the results of the
self._local_predict
method
- Parameters
datasamples (Any) – Input data
shared_state (Any) – Latest train task shared state (output of the train method)
predictions_path (os.PathLike) – Destination file to save predictions
- Return type
- save_local_state(path: pathlib.Path) None ¶
Saves all the stateful elements of the class to the specified path. Child classes do not need to override that function.
- Parameters
path (pathlib.Path) – A path where to save the class.
- Returns
None
- Return type
None
- property strategies: List[substrafl.strategies.schemas.StrategyName]¶
List of compatible strategies
- Returns
typing.List[StrategyName]
- Return type
- summary()¶
Summary of the class to be exposed in the experiment summary file
- Returns
a json-serializable dict with the attributes the user wants to store
- Return type
- train(datasamples: Any, shared_state: Optional[substrafl.strategies.schemas.FedAvgAveragedState] = None) substrafl.strategies.schemas.FedAvgSharedState ¶
Train method of the fed avg strategy implemented with torch. This method will execute the following operations:
instantiates the provided (or default) batch indexer
if a shared state is passed, set the parameters of the model to the provided shared state
train the model for n_updates
compute the weight update
- Parameters
datasamples (Any) – Input data returned by the
get_data
method from the opener.shared_state (FedAvgAveragedState, Optional) – Dict containing torch parameters that will be set to the model. Defaults to None.
- Returns
weight update (delta between fine-tuned weights and previous weights)
- Return type
TorchScaffoldAlgo¶
- class substrafl.algorithms.pytorch.torch_scaffold_algo.CUpdateRule(value)¶
Bases:
enum.IntEnum
The rule used to update the client control variate
Values:
STABLE (1): The stable rule, I in the Scaffold paper (not implemented)
FAST (2): The fast rule, II in the Scaffold paper
- class substrafl.algorithms.pytorch.torch_scaffold_algo.TorchScaffoldAlgo(model: torch.nn.modules.module.Module, criterion: torch.nn.modules.loss._Loss, optimizer: torch.optim.optimizer.Optimizer, index_generator: substrafl.index_generator.base.BaseIndexGenerator, dataset: torch.utils.data.dataset.Dataset, scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, with_batch_norm_parameters: bool = False, c_update_rule: substrafl.algorithms.pytorch.torch_scaffold_algo.CUpdateRule = CUpdateRule.FAST, seed: Optional[int] = None, use_gpu: bool = True, *args, **kwargs)¶
Bases:
substrafl.algorithms.pytorch.torch_base_algo.TorchAlgo
To be inherited. Wraps the necessary operation so a torch model can be trained in the Scaffold strategy.
The
train
method:updates the weights of the model with the aggregated weights,
initializes or loads the index generator,
calls the
_local_train()
method to do the local trainingthen gets the weight updates from the models and sends them to the aggregator.
The
predict
method generates the predictions.The child class can override the
_local_train()
and_local_predict()
methods, or other methods if necessary.To add a custom parameter to the
__init__``of the class, also add it to the call to ``super().__init__`
as shown in the example withmy_custom_extra_parameter
. Only primitive types (str, int, …) are supported for extra parameters.Example
class MyAlgo(TorchScaffoldAlgo): def __init__( self, my_custom_extra_parameter, ): super().__init__( model=perceptron, criterion=torch.nn.MSELoss(), optimizer=optimizer, num_updates=100, index_generator=NpIndexGenerator( num_updates=10, batch_size=32, ), dataset=MyDataset, my_custom_extra_parameter=my_custom_extra_parameter, ) def _local_train( self, train_dataset: torch.utils.data.Dataset, ): # Create torch dataloader # ``train_dataset = self._dataset(datasamples=datasamples, is_inference=False)`` is executed # prior the execution of this function train_data_loader = torch.utils.data.DataLoader(train_dataset, batch_sampler=self._index_generator) for x_batch, y_batch in train_data_loader: # Forward pass y_pred = self._model(x_batch) # Compute Loss loss = self._criterion(y_pred, y_batch) self._optimizer.zero_grad() # backward pass: compute the gradients loss.backward() # forward pass: update the weights. self._optimizer.step() # Scaffold specific: to keep between _optimizer.step() and _scheduler.step() # _scheduler and Scaffold strategies are not scientifically validated, it is not # recommended to use one. If one is used, _scheduler.step() must be called after # _scaffold_parameters_update() self._scaffold_parameters_update() if self._scheduler is not None: self._scheduler.step()
The
__init__
function is called at each call of thetrain
orpredict
function For round>2, some attributes will then be overwritten by their previous states in the load() function, before the train() or predict() function is ran.- Parameters
model (torch.nn.modules.module.Module) – A torch model.
criterion (torch.nn.modules.loss._Loss) – A torch criterion (loss).
optimizer (torch.optim.Optimizer) – A torch optimizer linked to the model.
index_generator (BaseIndexGenerator) – a stateful index generator. Must inherit from BaseIndexGenerator. The __next__ method shall return a python object (batch_index) which is used for selecting each batch from the output of the get_data method of the opener during training in this way:
x[batch_index], y[batch_index]
. If overridden, the generator class must be defined either as part of a package or in a different file than the one from which theexecute_experiment
function is called. This generator is used as statefulbatch_sampler
of the data loader created from the givendataset
dataset (torch.utils.data.Dataset) – an instantiable dataset class whose
__init__
arguments arex
,y
andis_inference
. The torch datasets used for both training and inference will be instantiate from it prior to the_local_train
execution and within thepredict
method. The__getitem__
methods of those generated datasets must return bothx
(training data) and y (target values) whenis_inference
is set toFalse
and onlyx
(testing data) whenis_inference
is set to True. This behavior can be changed by re-writing the _local_train or predict methods.scheduler (torch.optim.lr_scheduler._LRScheduler, Optional) – A torch scheduler that will be called at every batch. If None, no scheduler will be used. Defaults to None.
with_batch_norm_parameters (bool) – Whether to include the batch norm layer parameters in the fed avg strategy. Defaults to False.
c_update_rule (CUpdateRule) – The rule used to update the client control variate. Defaults to CUpdateRule.FAST.
seed (Optional[int]) – Seed set at the algo initialization on each organization. Defaults to None.
use_gpu (bool) – Whether to use the GPUs if they are available. Defaults to True.
- Raises
NumUpdatesValueError – If num_updates is inferior or equal to zero.
- _local_predict(predict_dataset: torch.utils.data.dataset.Dataset, predictions_path)¶
Execute the following operations:
Create the torch dataloader using the index generator batch size.
Set the model to eval mode
Save the predictions using the
_save_predictions()
function.
- Parameters
predict_dataset (torch.utils.data.Dataset) – predict_dataset build from the x returned by the opener.
Important
The onus is on the user to
save
the compute predictions. Substrafl provides the_save_predictions()
to do so. The user can load those predictions from a metric file with the command:y_pred = np.load(inputs['predictions'])
.- Raises
BatchSizeNotFoundError – No default batch size have been found to perform local prediction. Please overwrite the predict function of your algorithm.
- Parameters
predict_dataset (torch.utils.data.dataset.Dataset) –
- _local_train(train_dataset: torch.utils.data.dataset.Dataset)¶
Local train method. Contains the local training loop.
Train the model on
num_updates
minibatches, using theself._index_generator generator
as batch sampler for the torch dataset.- Parameters
train_dataset (torch.utils.data.Dataset) – train_dataset build from the x and y returned by the opener.
Important
You must use
next(self._index_generator)
at each minibatch, to ensure that you are using the batches are correct between 2 rounds of the federated learning strategy.Example
# Create torch dataloader train_data_loader = torch.utils.data.DataLoader(train_dataset, batch_sampler=self._index_generator) for x_batch, y_batch in train_data_loader: # Forward pass y_pred = self._model(x_batch) # Compute Loss loss = self._criterion(y_pred, y_batch) self._optimizer.zero_grad() loss.backward() self._optimizer.step() # Scaffold specific function to call between self._optimizer.step() and self._scheduler.step() self._scaffold_parameters_update() if self._scheduler is not None: self._scheduler.step()
- _save_predictions(predictions: torch.Tensor, predictions_path: os.PathLike)¶
Save the predictions under the numpy format.
- Parameters
predictions (torch.Tensor) – predictions to save.
predictions_path (os.PathLike) – destination file to save predictions.
- _scaffold_parameters_update()¶
Must be called for each update after the optimizer.step() operation.
- initialize(shared_states)¶
Empty function, useful to load the algo in the different organizations in order to perform an evaluation before any training step.
- Parameters
shared_states – Unused but enforced signature due to the @remote decorator.
- load_local_state(path: pathlib.Path) substrafl.algorithms.pytorch.torch_base_algo.TorchAlgo ¶
Load the stateful arguments of this class. Child classes do not need to override that function.
- Parameters
path (pathlib.Path) – The path where the class has been saved.
- Returns
The class with the loaded elements.
- Return type
- property model: torch.nn.modules.module.Module¶
Model exposed when the user downloads the model
- Returns
model
- Return type
- predict(datasamples: Any, shared_state: Optional[Any] = None, predictions_path: os.PathLike = None) Any ¶
Execute the following operations:
Create the test torch dataset.
Execute and return the results of the
self._local_predict
method
- Parameters
datasamples (Any) – Input data
shared_state (Any) – Latest train task shared state (output of the train method)
predictions_path (os.PathLike) – Destination file to save predictions
- Return type
- save_local_state(path: pathlib.Path) None ¶
Saves all the stateful elements of the class to the specified path. Child classes do not need to override that function.
- Parameters
path (pathlib.Path) – A path where to save the class.
- Returns
None
- Return type
None
- property strategies: List[substrafl.strategies.schemas.StrategyName]¶
List of compatible strategies
- Returns
typing.List[StrategyName]
- Return type
- summary()¶
Summary of the class to be exposed in the experiment summary file
- Returns
a json-serializable dict with the attributes the user wants to store
- Return type
- train(datasamples: Any, shared_state: Optional[substrafl.strategies.schemas.ScaffoldAveragedStates] = None) substrafl.strategies.schemas.ScaffoldSharedState ¶
Train method of the Scaffold strategy implemented with torch. This method will execute the following operations:
instantiates the provided (or default) batch indexer
if a shared state is passed, set the parameters of the model to the provided shared state
train the model for n_updates
compute the weight update and control variate update
- Parameters
datasamples (Any) – Input data returned by the
get_data
method from the opener.shared_state (Optional[ScaffoldAveragedStates]) – Shared state sent by the aggregate_organization (returned by the func strategies.scaffold.avg_shared_states) Defaults to None.
- Returns
the shared states of the Algo
- Return type
TorchNewtonRaphsonAlgo¶
- class substrafl.algorithms.pytorch.torch_newton_raphson_algo.TorchNewtonRaphsonAlgo(model: torch.nn.modules.module.Module, criterion: torch.nn.modules.loss._Loss, batch_size: Optional[int], dataset: torch.utils.data.dataset.Dataset, l2_coeff: float = 0, with_batch_norm_parameters: bool = False, seed: Optional[int] = None, use_gpu: bool = True, *args, **kwargs)¶
Bases:
substrafl.algorithms.pytorch.torch_base_algo.TorchAlgo
To be inherited. Wraps the necessary operation so a torch model can be trained in the Newton-Raphson strategy.
The
train
method:updates the weights of the model with the calculated weight updates
creates and initializes the index generator with the given batch size
calls the
_local_train()
method to compute the local gradients and Hessian and sends them to the aggregator.a L2 regularization can be applied to the loss by settings
l2_coeff
different to zero (default value). L2 regularization adds numerical stability when inverting the hessian.
The child class can overwrite
_local_train()
and_local_predict()
, or other methods if necessary.To add a custom parameter to the
__init__
of the class, also add it to the call tosuper().__init__
.The
__init__
function is called at each call of thetrain
orpredict
function.For
round>=2
, some attributes will then be overwritten by their previous states in theload_local_state()
function, before thetrain
orpredict
function is ran.TorchNewtonRaphsonAlgo
computes itsNewtonRaphsonSharedState
(gradients and Hessian matrix) on all the samples of the dataset. Data might be split into mini-batches to prevent loading too much data at once.- Parameters
model (torch.nn.modules.module.Module) – A torch model.
criterion (torch.nn.modules.loss._Loss) – A torch criterion (loss).
batch_size (int) – The size of the batch. If set to None it will be set to the number of samples in the dataset. Note that dividing the data to batches is done only to avoid the memory issues. The weights are updated only at the end of the epoch.
dataset (torch.utils.data.Dataset) – an instantiable dataset class whose
__init__
arguments arex
,y
andis_inference
. The torch datasets used for both training and inference will be instantiate from it prior to the_local_train
execution and within thepredict
method. The__getitem__
methods of those generated datasets must return bothx
(training data) and y (target values) whenis_inference
is set toFalse
and onlyx
(testing data) whenis_inference
is set to True. This behavior can be changed by re-writing the _local_train or predict methods.l2_coeff (float) – L2 regularization coefficient. The larger l2_coeff is, the better the stability of the hessian matrix will be, however the convergence might be slower. Defaults to 0.
with_batch_norm_parameters (bool) – Whether to include the batch norm layer parameters in the Newton-Raphson strategy. Defaults to False.
seed (Optional[int]) – Seed set at the algo initialization on each organization. Defaults to None.
use_gpu (bool) – Whether to use the GPUs if they are available. Defaults to True.
- _local_predict(predict_dataset: torch.utils.data.dataset.Dataset, predictions_path)¶
Execute the following operations:
Create the torch dataloader using the batch size given at the
__init__
of the classSet the model to eval mode
Return the predictions
- Parameters
predict_dataset (torch.utils.data.Dataset) – predict_dataset build from the x returned by the opener.
- _local_train(train_dataset: torch.utils.data.dataset.Dataset)¶
Local train method. Contains the local training loop.
Train the model on
num_updates
minibatches, using theself._index_generator generator
as batch sampler for the torch dataset.- Parameters
train_dataset (torch.utils.data.Dataset) – train_dataset build from the x and y returned by the opener.
Important
You must use
next(self._index_generator)
at each minibatch, to ensure that you are using the batches are correct between 2 rounds of the Newton Raphson strategy.Important
Call the function
self._update_gradients_and_hessian(loss, current_batch_size)
after computing the loss and the current_batch_size.Example
# As the parameters of the model don't change during the loop, the l2 regularization is constant and # can be calculated only once for all the batches. l2_reg = self._l2_reg() # Create torch dataloader train_data_loader = torch.utils.data.DataLoader(train_dataset, batch_sampler=self._index_generator) for x_batch, y_batch in train_data_loader: # Forward pass y_pred = self._model(x_batch) # Compute Loss loss = self._criterion(y_pred, y_batch) # L2 regularization loss += l2_reg current_batch_size = len(x_batch) # NEWTON RAPHSON specific function, to call after computing the loss and the current_batch_size. self._update_gradients_and_hessian(loss, current_batch_size)
- _save_predictions(predictions: torch.Tensor, predictions_path: os.PathLike)¶
Save the predictions under the numpy format.
- Parameters
predictions (torch.Tensor) – predictions to save.
predictions_path (os.PathLike) – destination file to save predictions.
- _update_gradients_and_hessian(loss: torch.Tensor, current_batch_size: int)¶
Updates the gradients and hessian matrices.
- Parameters
loss (torch.Tensor) – the loss to compute the gradients and hessian from.
current_batch_size (int) – The length of the batch used to compute the given loss.
- initialize(shared_states)¶
Empty function, useful to load the algo in the different organizations in order to perform an evaluation before any training step.
- Parameters
shared_states – Unused but enforced signature due to the @remote decorator.
- load_local_state(path: pathlib.Path) substrafl.algorithms.pytorch.torch_base_algo.TorchAlgo ¶
Load the stateful arguments of this class. Child classes do not need to override that function.
- Parameters
path (pathlib.Path) – The path where the class has been saved.
- Returns
The class with the loaded elements.
- Return type
- property model: torch.nn.modules.module.Module¶
Model exposed when the user downloads the model
- Returns
model
- Return type
- predict(datasamples: Any, shared_state: Optional[Any] = None, predictions_path: os.PathLike = None) Any ¶
Execute the following operations:
Create the test torch dataset.
Execute and return the results of the
self._local_predict
method
- Parameters
datasamples (Any) – Input data
shared_state (Any) – Latest train task shared state (output of the train method)
predictions_path (os.PathLike) – Destination file to save predictions
- Return type
- save_local_state(path: pathlib.Path) None ¶
Saves all the stateful elements of the class to the specified path. Child classes do not need to override that function.
- Parameters
path (pathlib.Path) – A path where to save the class.
- Returns
None
- Return type
None
- property strategies: List[substrafl.strategies.schemas.StrategyName]¶
List of compatible strategies
- Returns
typing.List[StrategyName]
- Return type
- summary()¶
Summary of the class to be exposed in the experiment summary file
- Returns
a json-serializable dict with the attributes the user wants to store
- Return type
- train(datasamples: Any, shared_state: Optional[substrafl.strategies.schemas.NewtonRaphsonAveragedStates] = None) substrafl.strategies.schemas.NewtonRaphsonSharedState ¶
Train method of the Newton Raphson strategy implemented with torch. This method will execute the following operations:
creates and initializes the index generator
if a shared state is passed, set the weights of the model to the provided shared state weights
initializes hessians and gradient
- calls the
_local_train()
method to compute the local gradients and Hessian and sends them to the aggregator.
a L2 regularization can be applied to the loss by settings l2_coeff different to zero (default value)
- Parameters
datasamples (Any) – Input data returned by the
get_data
method from the opener.shared_state (NewtonRaphsonAveragedStates, Optional) – Dict containing torch parameters that will be set to the model. Defaults to None.
- Returns
local gradients, local Hessian and the number of samples they were computed from.
- Return type
- Raises
NegativeHessianMatrixError – Hessian matrix must be positive semi-definite to correspond to a convex problem.
TorchFedPCAAlgo¶
- class substrafl.algorithms.pytorch.torch_fed_pca_algo.TorchFedPCAAlgo(dataset: torch.utils.data.dataset.Dataset, in_features: int, out_features: int, batch_size: Optional[int] = None, seed: int = 1, use_gpu: bool = True, *args, **kwargs)¶
Bases:
substrafl.algorithms.pytorch.torch_base_algo.TorchAlgo
To be inherited. Wraps the necessary operation so a torch model can be trained in the Federated PCA strategy.
The
train
method:computes the local mean during the first round
computes the covariance matrix during the second round
computes the eigen vectors regarding the shared covariance matrix for all next rounds
The
predict
method generates the eigen vectors.To add a custom parameter to the
__init__
of the class, also add it to the call tosuper().__init__
as shown in the example withmy_custom_extra_parameter
. Only primitive types (str, int, …) are supported for extra parameters.Example
class MyAlgo(TorchFedPCAAlgo): def __init__( self, my_custom_extra_parameter, ): super().__init__( in_features=10, out_features=2, batch_size=16, dataset=my_dataset, seed=seed, my_custom_extra_parameter=my_custom_extra_parameter, )
The
__init__
function is called at each call of the train() or predict() function Some attributes will then be overwritten by their previous states in the load() function, before the train() or predict() function is run.- Parameters
dataset (torch.utils.data.Dataset) – input data on which to perform PCA
in_features (int) – input data dimensionality
out_features (int) – dimension to keep after PCA
batch_size (Optional[int]) – mini-batch size
seed (int) – random generator seed. The seed is mandatory. Default to 1.
use_gpu (bool) – whether to use GPU or not. Default to True.
- _instantiate_index_generator(n_samples: int)¶
Create a generator for batches data points indices.
- Parameters
n_samples (int) – the desired batch size.
- Returns
the index generator.
- Return type
- _local_predict(predict_dataset: torch.utils.data.dataset.Dataset, predictions_path)¶
Execute the following operations:
Create the torch dataloader using the index generator batch size.
Set the model to eval mode
Save the predictions using the
_save_predictions()
function.
- Parameters
predict_dataset (torch.utils.data.Dataset) – predict_dataset build from the x returned by the opener.
Important
The onus is on the user to
save
the compute predictions. Substrafl provides the_save_predictions()
to do so. The user can load those predictions from a metric file with the command:y_pred = np.load(inputs['predictions'])
.- Raises
BatchSizeNotFoundError – No default batch size have been found to perform local prediction. Please overwrite the predict function of your algorithm.
- Parameters
predict_dataset (torch.utils.data.dataset.Dataset) –
- _local_train(train_dataset: torch.utils.data.dataset.Dataset)¶
Local train method. Contains the local training loop.
Train the model on
num_updates
minibatches, using theself._index_generator generator
as batch sampler for the torch dataset.- Parameters
train_dataset (torch.utils.data.Dataset) – train_dataset build from the x and y returned by the opener.
Important
You must use
next(self._index_generator)
as batch sampler, to ensure that the batches you are using are correct between 2 rounds of the federated learning strategy.Example
# Create torch dataloader train_data_loader = torch.utils.data.DataLoader(train_dataset, batch_sampler=self._index_generator) for x_batch, y_batch in train_data_loader: # Forward pass y_pred = self._model(x_batch) # Compute Loss loss = self._criterion(y_pred, y_batch) self._optimizer.zero_grad() loss.backward() self._optimizer.step() if self._scheduler is not None: self._scheduler.step()
- _save_predictions(predictions: torch.Tensor, predictions_path: os.PathLike)¶
Save the predictions under the numpy format.
- Parameters
predictions (torch.Tensor) – predictions to save.
predictions_path (os.PathLike) – destination file to save predictions.
- property eigen_vectors: torch.Tensor¶
Current computed eigen vectors.
- Returns
eigen vectors
- Return type
- initialize(shared_states)¶
Empty function, useful to load the algo in the different organizations in order to perform an evaluation before any training step.
- Parameters
shared_states – Unused but enforced signature due to the @remote decorator.
- load_local_state(path: pathlib.Path) substrafl.algorithms.pytorch.torch_base_algo.TorchAlgo ¶
Load the stateful arguments of this class. Child classes do not need to override that function.
- Parameters
path (pathlib.Path) – The path where the class has been saved.
- Returns
The class with the loaded elements.
- Return type
- property model: torch.nn.modules.module.Module¶
Model exposed when the user downloads the model
- Returns
model
- Return type
- predict(datasamples: Any, shared_state: Optional[Any] = None, predictions_path: pathlib.Path = None) Any ¶
Execute the following operations:
Create the test torch dataset.
Execute the reduction dimension of the test dataset, and save them as predictions on the prediction path.
- Parameters
datasamples (Any) – Input data
shared_state (Any) – Latest train task shared state (output of the train method)
predictions_path (os.PathLike) – Destination file to save predictions
- Return type
- save_local_state(path: pathlib.Path) None ¶
Saves all the stateful elements of the class to the specified path. Child classes do not need to override that function.
- Parameters
path (pathlib.Path) – A path where to save the class.
- Returns
None
- Return type
None
- property strategies: List[substrafl.strategies.schemas.StrategyName]¶
List of compatible strategies.
- Returns
typing.List[StrategyName]
- Return type
- summary()¶
Summary of the class to be exposed in the experiment summary file. Implement this function in the child class to add strategy-specific variables. The variables must be json-serializable.
Example
def summary(self): summary = super().summary() summary.update( "strategy_specific_variable": self._strategy_specific_variable, ) return summary
- Returns
a json-serializable dict with the attributes the user wants to store
- Return type
- train(datasamples: Any, shared_state: Optional[substrafl.strategies.schemas.FedPCAAveragedState] = None) substrafl.strategies.schemas.FedPCASharedState ¶
Train the local model for one round of the federated algorithm.
Important
This functions behaves differently depending on the round of the federated algorithm for PCA. In the first round, the mean vector is computed. In the second round, the covariance matrix is computed. The computation of the eigenvectors starts from round 3. A sufficient number of rounds is necessary for the method to produce accurate eigenvectors. This can be monitored through mean square reconstruction error which should reach a global minimum when the algorithm has converged.
- Parameters
datasamples (Any) – input data
shared_state (Optional[FedPCAAveragedState]) – incoming FedPCAAveragedState obtained at the previous round of the federated algorithm (after aggregation). It contains the federatively learnt eigenvectors. Defaults to None.
- Returns
updated model and parameters shared for aggregation.
- Return type
- transform(input_tensor: torch.Tensor) torch.Tensor ¶
Project the input vector on the eigen vector subspace. Input tensor shape must be of shape (N, in_features). The returned tensor will be of shape (N, out_features).
- Parameters
input_tensor (torch.Tensor) – input tensor to compute the dimension reduction on.
- Returns
projected tensor on the computed eigen vector dimension.
- Return type
- class substrafl.algorithms.pytorch.torch_fed_pca_algo.TorchLinearModel(in_features: int, out_features: int)¶
Bases:
torch.nn.modules.module.Module
Define linear model to encapsulate eigenvectors.
- Parameters
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- add_module(name: str, module: Optional[torch.nn.modules.module.Module]) None ¶
Adds a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters
name (str) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
- Return type
None
- apply(fn: Callable[[torch.nn.modules.module.Module], None]) torch.nn.modules.module.T ¶
Applies
fn
recursively to every submodule (as returned by.children()
) as well as self. Typical use includes initializing the parameters of a model (see also torch.nn.init).- Parameters
fn (
Module
-> None) – function to be applied to each submoduleself (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- bfloat16() torch.nn.modules.module.T ¶
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns
self
- Return type
Module
- Parameters
self (torch.nn.modules.module.T) –
- buffers(recurse: bool = True) Iterator[torch.Tensor] ¶
Returns an iterator over module buffers.
- Parameters
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields
torch.Tensor – module buffer
- Return type
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- children() Iterator[torch.nn.modules.module.Module] ¶
Returns an iterator over immediate children modules.
- Yields
Module – a child module
- Return type
- cpu() torch.nn.modules.module.T ¶
Moves all model parameters and buffers to the CPU.
Note
This method modifies the module in-place.
- Returns
self
- Return type
Module
- Parameters
self (torch.nn.modules.module.T) –
- cuda(device: Optional[Union[int, torch.device]] = None) torch.nn.modules.module.T ¶
Moves all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- Parameters
device (int, optional) – if specified, all parameters will be copied to that device
self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- double() torch.nn.modules.module.T ¶
Casts all floating point parameters and buffers to
double
datatype.Note
This method modifies the module in-place.
- Returns
self
- Return type
Module
- Parameters
self (torch.nn.modules.module.T) –
- eval() torch.nn.modules.module.T ¶
Sets the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See Locally disabling gradient computation for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns
self
- Return type
Module
- Parameters
self (torch.nn.modules.module.T) –
- extra_repr() str ¶
Set the extra representation of the module
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- Return type
- float() torch.nn.modules.module.T ¶
Casts all floating point parameters and buffers to
float
datatype.Note
This method modifies the module in-place.
- Returns
self
- Return type
Module
- Parameters
self (torch.nn.modules.module.T) –
- forward(x: torch.Tensor) torch.Tensor ¶
Performs dimensionality reduction.
- Parameters
x (torch.Tensor) – inputs to map to reduced dim space. shape of x is (B, D_IN)
- Returns
reduced dim vectors
- Return type
- get_buffer(target: str) torch.Tensor ¶
Returns the buffer given by
target
if it exists, otherwise throws an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters
target (str) – The fully-qualified string name of the buffer to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns
The buffer referenced by
target
- Return type
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state() Any ¶
Returns any extra state to include in the module’s state_dict. Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be pickleable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns
Any extra state to store in the module’s state_dict
- Return type
- get_parameter(target: str) torch.nn.parameter.Parameter ¶
Returns the parameter given by
target
if it exists, otherwise throws an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters
target (str) – The fully-qualified string name of the Parameter to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns
The Parameter referenced by
target
- Return type
torch.nn.Parameter
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_submodule(target: str) torch.nn.modules.module.Module ¶
Returns the submodule given by
target
if it exists, otherwise throws an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters
target (str) – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns
The submodule referenced by
target
- Return type
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- half() torch.nn.modules.module.T ¶
Casts all floating point parameters and buffers to
half
datatype.Note
This method modifies the module in-place.
- Returns
self
- Return type
Module
- Parameters
self (torch.nn.modules.module.T) –
- ipu(device: Optional[Union[int, torch.device]] = None) torch.nn.modules.module.T ¶
Moves all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.
Note
This method modifies the module in-place.
- Parameters
device (int, optional) – if specified, all parameters will be copied to that device
self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- load_state_dict(state_dict: Mapping[str, Any], strict: bool = True)¶
Copies parameters and buffers from
state_dict
into this module and its descendants. Ifstrict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.- Parameters
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
- Returns
missing_keys is a list of str containing the missing keys
unexpected_keys is a list of str containing the unexpected keys
- Return type
NamedTuple
withmissing_keys
andunexpected_keys
fields
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- modules() Iterator[torch.nn.modules.module.Module] ¶
Returns an iterator over all modules in the network.
- Yields
Module – a module in the network
- Return type
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- named_buffers(prefix: str = '', recurse: bool = True) Iterator[Tuple[str, torch.Tensor]] ¶
Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters
- Yields
(str, torch.Tensor) – Tuple containing the name and buffer
- Return type
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[Tuple[str, torch.nn.modules.module.Module]] ¶
Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields
(str, Module) – Tuple containing a name and child module
- Return type
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Optional[Set[torch.nn.modules.module.Module]] = None, prefix: str = '', remove_duplicate: bool = True)¶
Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters
memo (Optional[Set[torch.nn.modules.module.Module]]) – a memo to store the set of modules already added to the result
prefix (str) – a prefix that will be added to the name of the module
remove_duplicate (bool) – whether to remove the duplicated module instances in the result or not
- Yields
(str, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True) Iterator[Tuple[str, torch.nn.parameter.Parameter]] ¶
Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters
- Yields
(str, Parameter) – Tuple containing the name and parameter
- Return type
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- parameters(recurse: bool = True) Iterator[torch.nn.parameter.Parameter] ¶
Returns an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields
Parameter – module parameter
- Return type
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- register_backward_hook(hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) torch.utils.hooks.RemovableHandle ¶
Registers a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
- Parameters
hook (Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) –
- register_buffer(name: str, tensor: Optional[torch.Tensor], persistent: bool = True) None ¶
Adds a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters
name (str) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
- Return type
None
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Callable[[...], None]) torch.utils.hooks.RemovableHandle ¶
Registers a forward hook on the module.
The hook will be called every time after
forward()
has computed an output. It should have the following signature:hook(module, input, output) -> None or modified output
The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the
forward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called.- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
- Parameters
hook (Callable[[...], None]) –
- register_forward_pre_hook(hook: Callable[[...], None]) torch.utils.hooks.RemovableHandle ¶
Registers a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked. It should have the following signature:hook(module, input) -> None or modified input
The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the
forward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple).- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
- Parameters
hook (Callable[[...], None]) –
- register_full_backward_hook(hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) torch.utils.hooks.RemovableHandle ¶
Registers a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
- Parameters
hook (Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) –
- register_load_state_dict_post_hook(hook)¶
Registers a post hook to be run after module’s
load_state_dict
is called.- It should have the following signature::
hook(module, incompatible_keys) -> None
The
module
argument is the current module that this hook is registered on, and theincompatible_keys
argument is aNamedTuple
consisting of attributesmissing_keys
andunexpected_keys
.missing_keys
is alist
ofstr
containing the missing keys andunexpected_keys
is alist
ofstr
containing the unexpected keys.The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling
load_state_dict()
withstrict=True
are affected by modifications the hook makes tomissing_keys
orunexpected_keys
, as expected. Additions to either set of keys will result in an error being thrown whenstrict=True
, and clearning out both missing and unexpected keys will avoid an error.- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
- register_module(name: str, module: Optional[torch.nn.modules.module.Module]) None ¶
Alias for
add_module()
.- Parameters
name (str) –
module (Optional[torch.nn.modules.module.Module]) –
- Return type
None
- register_parameter(name: str, param: Optional[torch.nn.parameter.Parameter]) None ¶
Adds a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters
name (str) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- Return type
None
- requires_grad_(requires_grad: bool = True) torch.nn.modules.module.T ¶
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See Locally disabling gradient computation for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Parameters
requires_grad (bool) – whether autograd should record operations on parameters in this module. Default:
True
.self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- set_extra_state(state: Any)¶
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.- Parameters
state (dict) – Extra state from the state_dict
See
torch.Tensor.share_memory_()
- Parameters
self (torch.nn.modules.module.T) –
- Return type
torch.nn.modules.module.T
- state_dict(*args, destination=None, prefix='', keep_vars=False)¶
Returns a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.Note
The returned object is a shallow copy. It contains references to the module’s parameters and buffers.
Warning
Currently
state_dict()
also accepts positional arguments fordestination
,prefix
andkeep_vars
in order. However, this is being deprecated and keyword arguments will be enforced in future releases.Warning
Please avoid the use of argument
destination
as it is not designed for end-users.- Parameters
destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an
OrderedDict
will be created and returned. Default:None
.prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default:
''
.keep_vars (bool, optional) – by default the
Tensor
s returned in the state dict are detached from autograd. If it’s set toTrue
, detaching will not be performed. Default:False
.
- Returns
a dictionary containing a whole state of the module
- Return type
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
- to(*args, **kwargs)¶
Moves and/or casts the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns
self
- Return type
Module
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- to_empty(*, device: Union[str, torch.device]) torch.nn.modules.module.T ¶
Moves the parameters and buffers to the specified device without copying storage.
- Parameters
device (
torch.device
) – The desired device of the parameters and buffers in this module.self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- train(mode: bool = True) torch.nn.modules.module.T ¶
Sets the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- type(dst_type: Union[torch.dtype, str]) torch.nn.modules.module.T ¶
Casts all parameters and buffers to
dst_type
.Note
This method modifies the module in-place.
- Parameters
dst_type (type or string) – the desired type
self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- xpu(device: Optional[Union[int, torch.device]] = None) torch.nn.modules.module.T ¶
Moves all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Parameters
device (int, optional) – if specified, all parameters will be copied to that device
self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- zero_grad(set_to_none: bool = False) None ¶
Sets gradients of all model parameters to zero. See similar function under
torch.optim.Optimizer
for more context.- Parameters
set_to_none (bool) – instead of setting to zero, set the grads to None. See
torch.optim.Optimizer.zero_grad()
for details.- Return type
None
TorchSingleOrganizationAlgo¶
- class substrafl.algorithms.pytorch.TorchSingleOrganizationAlgo(model: torch.nn.modules.module.Module, criterion: torch.nn.modules.loss._Loss, optimizer: torch.optim.optimizer.Optimizer, index_generator: substrafl.index_generator.base.BaseIndexGenerator, dataset: torch.utils.data.dataset.Dataset, scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, seed: Optional[int] = None, use_gpu: bool = True, *args, **kwargs)¶
Bases:
substrafl.algorithms.pytorch.torch_base_algo.TorchAlgo
To be inherited. Wraps the necessary operation so a torch model can be trained in the Single organization strategy.
The
train
method:initializes or loads the index generator,
calls the
_local_train()
method to do the local training
The
predict
method generates the predictions.The child class can override the
_local_train()
and_local_predict()
methods, or other methods if necessary.To add a custom parameter to the
__init__``of the class, also add it to the call to ``super().__init__`
as shown in the example withmy_custom_extra_parameter
. Only primitive types (str, int, …) are supported for extra parameters.Example
class MyAlgo(TorchSingleOrganizationAlgo): def __init__( self, my_custom_extra_parameter, ): super().__init__( model=perceptron, criterion=torch.nn.MSELoss(), optimizer=optimizer, index_generator=NpIndexGenerator( num_updates=100, batch_size=32, ), dataset=MyDataset, my_custom_extra_parameter=my_custom_extra_parameter, ) def _local_train( self, train_dataset: torch.utils.data.Dataset, ): # Create torch dataloader # ``train_dataset = self._dataset(datasamples=datasamples, is_inference=False)`` is executed # prior the execution of this function train_data_loader = torch.utils.data.DataLoader(train_dataset, batch_sampler=self._index_generator) for x_batch, y_batch in train_data_loader: # Forward pass y_pred = self._model(x_batch) # Compute Loss loss = self._criterion(y_pred, y_batch) self._optimizer.zero_grad() # backward pass: compute the gradients loss.backward() # forward pass: update the weights. self._optimizer.step() if self._scheduler is not None: self._scheduler.step()
The
__init__
functions is called at each call of the train() or predict() function For round>=2, some attributes will then be overwritten by their previous states in the load() function, before the train() or predict() function is ran.- Parameters
Args –
model (torch.nn.modules.module.Module) – A torch model.
criterion (torch.nn.modules.loss._Loss) – A torch criterion (loss).
optimizer (torch.optim.Optimizer) – A torch optimizer linked to the model.
index_generator (BaseIndexGenerator) – a stateful index generator. Must inherit from BaseIndexGenerator. The __next__ method shall return a python object (batch_index) which is used for selecting each batch from the output of the the get_data method of the opener during training in this way:
x[batch_index], y[batch_index]
. If overridden, the generator class must be defined either as part of a package or in a different file than the one from which theexecute_experiment
function is called. This generator is used as statefulbatch_sampler
of the data loader created from the givendataset
dataset (torch.utils.data.Dataset) – an instantiable dataset class whose
__init__
arguments arex
,y
andis_inference
. The torch datasets used for both training and inference will be instantiate from it prior to the_local_train
execution and within thepredict
method. The__getitem__
methods of those generated datasets must return bothx
(training data) and y (target values) whenis_inference
is set toFalse
and onlyx
(testing data) whenis_inference
is set to True. This behavior can be changed by re-writing the _local_train or predict methods.scheduler (torch.optim.lr_scheduler._LRScheduler, Optional) – A torch scheduler that will be called at every batch. If None, no scheduler will be used. Defaults to None.
seed (Optional[int]) – Seed set at the algo initialization on each organization. Defaults to None.
use_gpu (bool) – Whether to use the GPUs if they are available. Defaults to True.
- _local_predict(predict_dataset: torch.utils.data.dataset.Dataset, predictions_path)¶
Execute the following operations:
Create the torch dataloader using the index generator batch size.
Set the model to eval mode
Save the predictions using the
_save_predictions()
function.
- Parameters
predict_dataset (torch.utils.data.Dataset) – predict_dataset build from the x returned by the opener.
Important
The onus is on the user to
save
the compute predictions. Substrafl provides the_save_predictions()
to do so. The user can load those predictions from a metric file with the command:y_pred = np.load(inputs['predictions'])
.- Raises
BatchSizeNotFoundError – No default batch size have been found to perform local prediction. Please overwrite the predict function of your algorithm.
- Parameters
predict_dataset (torch.utils.data.dataset.Dataset) –
- _local_train(train_dataset: torch.utils.data.dataset.Dataset)¶
Local train method. Contains the local training loop.
Train the model on
num_updates
minibatches, using theself._index_generator generator
as batch sampler for the torch dataset.- Parameters
train_dataset (torch.utils.data.Dataset) – train_dataset build from the x and y returned by the opener.
Important
You must use
next(self._index_generator)
as batch sampler, to ensure that the batches you are using are correct between 2 rounds of the federated learning strategy.Example
# Create torch dataloader train_data_loader = torch.utils.data.DataLoader(train_dataset, batch_sampler=self._index_generator) for x_batch, y_batch in train_data_loader: # Forward pass y_pred = self._model(x_batch) # Compute Loss loss = self._criterion(y_pred, y_batch) self._optimizer.zero_grad() loss.backward() self._optimizer.step() if self._scheduler is not None: self._scheduler.step()
- _save_predictions(predictions: torch.Tensor, predictions_path: os.PathLike)¶
Save the predictions under the numpy format.
- Parameters
predictions (torch.Tensor) – predictions to save.
predictions_path (os.PathLike) – destination file to save predictions.
- initialize(shared_states)¶
Empty function, useful to load the algo in the different organizations in order to perform an evaluation before any training step.
- Parameters
shared_states – Unused but enforced signature due to the @remote decorator.
- load_local_state(path: pathlib.Path) substrafl.algorithms.pytorch.torch_base_algo.TorchAlgo ¶
Load the stateful arguments of this class. Child classes do not need to override that function.
- Parameters
path (pathlib.Path) – The path where the class has been saved.
- Returns
The class with the loaded elements.
- Return type
- property model: torch.nn.modules.module.Module¶
Model exposed when the user downloads the model
- Returns
model
- Return type
- predict(datasamples: Any, shared_state: Optional[Any] = None, predictions_path: os.PathLike = None) Any ¶
Execute the following operations:
Create the test torch dataset.
Execute and return the results of the
self._local_predict
method
- Parameters
datasamples (Any) – Input data
shared_state (Any) – Latest train task shared state (output of the train method)
predictions_path (os.PathLike) – Destination file to save predictions
- Return type
- save_local_state(path: pathlib.Path) None ¶
Saves all the stateful elements of the class to the specified path. Child classes do not need to override that function.
- Parameters
path (pathlib.Path) – A path where to save the class.
- Returns
None
- Return type
None
- property strategies: List[substrafl.strategies.schemas.StrategyName]¶
List of compatible strategies
- Returns
typing.List[StrategyName]
- Return type
- summary()¶
Summary of the class to be exposed in the experiment summary file. Implement this function in the child class to add strategy-specific variables. The variables must be json-serializable.
Example
def summary(self): summary = super().summary() summary.update( "strategy_specific_variable": self._strategy_specific_variable, ) return summary
- Returns
a json-serializable dict with the attributes the user wants to store
- Return type
- train(datasamples: Any, shared_state=None) Dict[str, numpy.ndarray] ¶
Train method of the SingleOrganization strategy implemented with torch.
- Parameters
- Returns
weight update which is an empty array. SingleOrganization strategy is not using shared state and this return is only for consistency.
- Return type
Dict[str, numpy.ndarray]
Torch Base Class¶
- class substrafl.algorithms.pytorch.torch_base_algo.TorchAlgo(model: torch.nn.modules.module.Module, criterion: torch.nn.modules.loss._Loss, index_generator: Optional[substrafl.index_generator.base.BaseIndexGenerator], dataset: torch.utils.data.dataset.Dataset, optimizer: Optional[torch.optim.optimizer.Optimizer] = None, scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, seed: Optional[int] = None, use_gpu: bool = True, *args, **kwargs)¶
Bases:
algorithms.algo.Algo
Base TorchAlgo class, all the torch algo classes inherit from it.
To implement a new strategy:
add the strategy specific parameters in the
__init__
implement the
train()
function: it must use the_local_train()
function, which can be overridden by the user and must contain as little strategy-specific code as possibleReimplement the
_update_from_checkpoint()
and_get_state_to_save()
functions to add strategy-specific variables to the local state
The
__init__
functions is called at each call of the train() or predict() function For round>2, some attributes will then be overwritten by their previous states in the load() function, before the train() or predict() function is ran.- Parameters
model (torch.nn.modules.module.Module) –
criterion (torch.nn.modules.loss._Loss) –
index_generator (Optional[substrafl.index_generator.base.BaseIndexGenerator]) –
dataset (torch.utils.data.dataset.Dataset) –
optimizer (Optional[torch.optim.optimizer.Optimizer]) –
scheduler (Optional[torch.optim.lr_scheduler._LRScheduler]) –
use_gpu (bool) –
- _get_state_to_save() dict ¶
Create the algo checkpoint: a dictionary saved with
torch.save
. In this algo, it contains the state to save for every strategy. Reimplement in the child class to add strategy-specific variables.Example
def _get_state_to_save(self) -> dict: local_state = super()._get_state_to_save() local_state.update({ "strategy_specific_variable": self._strategy_specific_variable, }) return local_state
- Returns
checkpoint to save
- Return type
- _get_torch_device(use_gpu: bool) torch.device ¶
Get the torch device, CPU or GPU, depending on availability and user input.
- Parameters
use_gpu (bool) – whether to use GPUs if available or not.
- Returns
Torch device
- Return type
- _local_predict(predict_dataset: torch.utils.data.dataset.Dataset, predictions_path)¶
Execute the following operations:
Create the torch dataloader using the index generator batch size.
Set the model to eval mode
Save the predictions using the
_save_predictions()
function.
- Parameters
predict_dataset (torch.utils.data.Dataset) – predict_dataset build from the x returned by the opener.
Important
The onus is on the user to
save
the compute predictions. Substrafl provides the_save_predictions()
to do so. The user can load those predictions from a metric file with the command:y_pred = np.load(inputs['predictions'])
.- Raises
BatchSizeNotFoundError – No default batch size have been found to perform local prediction. Please overwrite the predict function of your algorithm.
- Parameters
predict_dataset (torch.utils.data.dataset.Dataset) –
- _local_train(train_dataset: torch.utils.data.dataset.Dataset)¶
Local train method. Contains the local training loop.
Train the model on
num_updates
minibatches, using theself._index_generator generator
as batch sampler for the torch dataset.- Parameters
train_dataset (torch.utils.data.Dataset) – train_dataset build from the x and y returned by the opener.
Important
You must use
next(self._index_generator)
as batch sampler, to ensure that the batches you are using are correct between 2 rounds of the federated learning strategy.Example
# Create torch dataloader train_data_loader = torch.utils.data.DataLoader(train_dataset, batch_sampler=self._index_generator) for x_batch, y_batch in train_data_loader: # Forward pass y_pred = self._model(x_batch) # Compute Loss loss = self._criterion(y_pred, y_batch) self._optimizer.zero_grad() loss.backward() self._optimizer.step() if self._scheduler is not None: self._scheduler.step()
- _save_predictions(predictions: torch.Tensor, predictions_path: os.PathLike)¶
Save the predictions under the numpy format.
- Parameters
predictions (torch.Tensor) – predictions to save.
predictions_path (os.PathLike) – destination file to save predictions.
- _update_from_checkpoint(path: pathlib.Path) dict ¶
Load the checkpoint and update the internal state from it. Pop the values from the checkpoint so that we can ensure that it is empty at the end, i.e. all the values have been used.
- Parameters
path (pathlib.Path) – path where the checkpoint is saved
- Returns
checkpoint
- Return type
Example
def _update_from_checkpoint(self, path: Path) -> dict: checkpoint = super()._update_from_checkpoint(path=path) self._strategy_specific_variable = checkpoint.pop("strategy_specific_variable") return checkpoint
- initialize(shared_states)¶
Empty function, useful to load the algo in the different organizations in order to perform an evaluation before any training step.
- Parameters
shared_states – Unused but enforced signature due to the @remote decorator.
- load_local_state(path: pathlib.Path) substrafl.algorithms.pytorch.torch_base_algo.TorchAlgo ¶
Load the stateful arguments of this class. Child classes do not need to override that function.
- Parameters
path (pathlib.Path) – The path where the class has been saved.
- Returns
The class with the loaded elements.
- Return type
- property model: torch.nn.modules.module.Module¶
Model exposed when the user downloads the model
- Returns
model
- Return type
- predict(datasamples: Any, shared_state: Optional[Any] = None, predictions_path: os.PathLike = None) Any ¶
Execute the following operations:
Create the test torch dataset.
Execute and return the results of the
self._local_predict
method
- Parameters
datasamples (Any) – Input data
shared_state (Any) – Latest train task shared state (output of the train method)
predictions_path (os.PathLike) – Destination file to save predictions
- Return type
- save_local_state(path: pathlib.Path) None ¶
Saves all the stateful elements of the class to the specified path. Child classes do not need to override that function.
- Parameters
path (pathlib.Path) – A path where to save the class.
- Returns
None
- Return type
None
- abstract property strategies: List[StrategyName]¶
List of compatible strategies
- Returns
typing.List[StrategyName]
- Return type
- summary()¶
Summary of the class to be exposed in the experiment summary file. Implement this function in the child class to add strategy-specific variables. The variables must be json-serializable.
Example
def summary(self): summary = super().summary() summary.update( "strategy_specific_variable": self._strategy_specific_variable, ) return summary
- Returns
a json-serializable dict with the attributes the user wants to store
- Return type
- abstract train(datasamples: Any, shared_state: Optional[Any] = None) Any ¶
Is executed for each TrainDataOrganizations. This functions takes the output of the
get_data
method from the opener, plus the shared state from the aggregator if there is one, and returns a shared state (state to send to the aggregator). Any variable that needs to be saved and updated from one round to another should be an attribute ofself
(e.g.self._my_local_state_variable
), and be saved and loaded in thesave_local_state()
andload_local_state()
functions.- Parameters
- Raises
- Returns
The object passed to the next organization of the computation graph.
- Return type
Torch functions¶
- substrafl.algorithms.pytorch.weight_manager.add_parameters(parameters: List[torch.nn.parameter.Parameter], parameters_to_add: List[torch.nn.parameter.Parameter]) List[torch.nn.parameter.Parameter] ¶
add the given list of torch parameters i.e. : parameters - parameters_to_add. Those elements can be extracted from a model thanks to the
get_parameters()
function.- Parameters
parameters (List[torch.nn.parameter.Parameter]) – A list of torch parameters.
parameters_to_add (List[torch.nn.parameter.Parameter]) – A list of torch parameters.
- Returns
The addition of the given parameters.
- Return type
- substrafl.algorithms.pytorch.weight_manager.batch_norm_param(model: torch.nn.modules.module.Module) Generator[torch.nn.parameter.Parameter, None, None] ¶
Generator of the internal parameters of the batch norm layers of the model. This yields references hence all modification done to the yielded object will be applied to the input model.
The internal parameters of a batch norm layer include the running mean and the running variance.
- Parameters
model (torch.nn.Module) – A torch model.
- Yields
float – The running mean and variance of all batch norm layers parameters from the given model.
- Return type
Generator[torch.nn.parameter.Parameter, None, None]
- substrafl.algorithms.pytorch.weight_manager.get_parameters(model: torch.nn.modules.module.Module, with_batch_norm_parameters: bool) List[torch.nn.parameter.Parameter] ¶
Model parameters from the provided torch model. This function returns a copy not a reference. If with_batch_norm_parameters is set to True, the running mean and the running variance of the batch norm layers will be added after the “classic” parameters of the model.
- Parameters
model (torch.nn.Module) – A torch model.
with_batch_norm_parameters (bool) – If set to True, the running mean and the running variance of each batch norm layer will be added after the “classic” parameters.
- Returns
The list of torch parameters of the provided model.
- Return type
- substrafl.algorithms.pytorch.weight_manager.increment_parameters(model: torch.nn.modules.module.Module, updates: List[torch.nn.parameter.Parameter], *, with_batch_norm_parameters: bool, updates_multiplier: float = 1.0)¶
Add the given update to the model parameters. If with_batch_norm_parameters is set to True, the operation will include the running mean and the running variance of the batch norm layers (in this case, they must be included in the given update). This function modifies the given model internally and therefore returns nothing.
- Parameters
model (torch.nn.Module) – The torch model to modify.
updates (List[torch.nn.parameter.Parameter]) – A list of torch parameters to add to the model, as ordered by the standard iterators. The trainable parameters should come first followed by the batch norm parameters if with_batch_norm_parameters is set to True. If the type is np.ndarray, it is converted in torch.Tensor.
with_batch_norm_parameters (bool) – If set to True, the running mean and the running variance of each batch norm layer will be included, after the trainable layers, in the model parameters to modify.
updates_multiplier (float, Optional) – The coefficient which multiplies the updates before being added to the model. Defaults to 1.0.
- substrafl.algorithms.pytorch.weight_manager.is_batchnorm_layer(layer: torch.nn.modules.module.Module) bool ¶
Checks if the provided layer is a Batch Norm layer (either 1D, 2D or 3D).
- Parameters
layer (torch.nn.Module) – Pytorch module.
- Returns
Whether the given module is a batch norm one.
- Return type
- substrafl.algorithms.pytorch.weight_manager.model_parameters(model: torch.nn.modules.module.Module, with_batch_norm_parameters: bool) torch.nn.parameter.Parameter ¶
A generator of the given model parameters. The returned generator yields references hence all modification done to the yielded object will be applied to the input model. If with_batch_norm_parameters is set to True, the running mean and the running variance of each batch norm layer will be added after the “classic” parameters.
- Parameters
model (torch.nn.Module) – A torch model.
with_batch_norm_parameters (bool) – If set to True, the running mean and the running variance of each batch norm layer will be added after the “classic” parameters.
- Returns
A python generator of torch parameters.
- Return type
- substrafl.algorithms.pytorch.weight_manager.set_parameters(model: torch.nn.modules.module.Module, parameters: List[torch.nn.parameter.Parameter], with_batch_norm_parameters: bool)¶
Sets the parameters of a pytorch model to the provided parameters. If with_batch_norm_parameters is set to True, the operation will include the running mean and the running variance of the batch norm layers (in this case, they must be included in the given parameters). This function modifies the given model internally and therefore returns nothing.
- Parameters
model (torch.nn.Module) – The torch model to modify.
parameters (List[torch.nn.parameter.Parameter]) – Model parameters, as ordered by the standard iterators.
with_batch_norm_parameters (bool) – is set to True.
with_batch_norm_parameters – Whether to the batch norm layers’ internal parameters are provided and need to be included in the operation.
- substrafl.algorithms.pytorch.weight_manager.subtract_parameters(parameters: List[torch.nn.parameter.Parameter], parameters_to_subtract: List[torch.nn.parameter.Parameter]) List[torch.nn.parameter.Parameter] ¶
subtract the given list of torch parameters i.e. : parameters - parameters_to_subtract. Those elements can be extracted from a model thanks to the
get_parameters()
function.- Parameters
parameters (List[torch.nn.parameter.Parameter]) – A list of torch parameters.
parameters_to_subtract (List[torch.nn.parameter.Parameter]) – A list of torch parameters.
- Returns
The subtraction of the given parameters.
- Return type
- substrafl.algorithms.pytorch.weight_manager.weighted_sum_parameters(parameters_list: List[List[torch.Tensor]], coefficient_list: List[float]) List[torch.Tensor] ¶
Do a weighted sum of the given lists of torch parameters. Those elements can be extracted from a model thanks to the
get_parameters()
function.- Parameters
parameters_list (List[List[torch.Tensor]]) – A list of List of torch parameters.
coefficient_list (List[float]) – A list of coefficients which will be applied to each list of parameters.
- Returns
The weighted sum of the given list of torch parameters.
- Return type
- substrafl.algorithms.pytorch.weight_manager.zeros_like_parameters(model: torch.nn.modules.module.Module, with_batch_norm_parameters: bool, device: torch.device) List[torch.Tensor] ¶
Copy the model parameters from the provided torch model and sets values to zero. If with_batch_norm_parameters is set to True, the running mean and the running variance of the batch norm layers will be added after the “classic” parameters of the model.
- Parameters
model (torch.nn.Module) – A torch model.
with_batch_norm_parameters (bool) – If set to True, the running mean and the running variance of each batch norm layer will be added after the “classic” parameters.
device (torch.device) – torch device on which to save the parameters
- Returns
The list of torch parameters of the provided model with values set to zero.
- Return type
Base Class¶
- class substrafl.algorithms.algo.Algo(*args, **kwargs)¶
Bases:
abc.ABC
The base class to be inherited for substrafl algorithms.
- initialize(shared_states)¶
Empty function, useful to load the algo in the different organizations in order to perform an evaluation before any training step.
- Parameters
shared_states – Unused but enforced signature due to the @remote decorator.
- abstract load_local_state(path: pathlib.Path) Any ¶
Executed at the beginning of each step of the computation graph so for each organization, at each step of the computation graph the previous local state can be retrieved.
- Parameters
path (pathlib.Path) – The path where the previous local state has been saved.
- Raises
- Returns
The loaded element.
- Return type
- abstract property model: Any¶
Model exposed when the user downloads the model
- Returns
model
- Return type
- abstract predict(datasamples: Any, shared_state: Optional[Any] = None, predictions_path: Optional[pathlib.Path] = None) Any ¶
Is executed for each TestDataOrganizations. The predictions will be saved on the predictions_path. The predictions are then loaded and used to calculate the metric.
- Parameters
datasamples (Any) – The output of the
get_data
method of the opener.shared_state (Any) – None for the first round of the computation graph then the returned object from the previous organization of the computation graph.
predictions_path (pathlib.Path) – Destination file to save predictions.
- Raises
- Return type
- abstract save_local_state(path: pathlib.Path) None ¶
Executed at the end of each step of the computation graph so for each organization, the local state can be saved.
- Parameters
path (pathlib.Path) – The path where the previous local state has been saved.
- Raises
- Returns
None
- Return type
None
- abstract property strategies: List[StrategyName]¶
List of compatible strategies
- Returns
typing.List[StrategyName]
- Return type
- summary() dict ¶
Summary of the class to be exposed in the experiment summary file. For child classes, override this function and add
super.summary()
Example
def summary(self): summary = super().summary() summary.update( { "attribute": self.attribute, ... } ) return summary
- Returns
a json-serializable dict with the attributes the user wants to store
- Return type
- abstract train(datasamples, shared_state: Any) Any ¶
Is executed for each TrainDataOrganizations. This functions takes the output of the
get_data
method from the opener, plus the shared state from the aggregator if there is one, and returns a shared state (state to send to the aggregator). Any variable that needs to be saved and updated from one round to another should be an attribute ofself
(e.g.self._my_local_state_variable
), and be saved and loaded in thesave_local_state()
andload_local_state()
functions.- Parameters
- Raises
- Returns
The object passed to the next organization of the computation graph.
- Return type